The Minimum Spanning Tree Problem

Given a connected graph, find a spanning
tree of minimum total edge cost.

where,
n = the number of vertices

m = the number of edges
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Applications

Network Construction

Clustering

Minimum Tour Relaxation (Held-Karp 1-trees)




A Simple Solution From the 80’s

(with apologies to Oliver Stone)

Gorden Gecko: "Greed is Good"

Repeatedly select the cheapest unselected edge

and add it to the tree under construction if it

connects two previously disconnected pieces.

Kruskal, 1956






The greedy method generalizes to matroids.

We shall generalize the method rather than

the domain of application.




Generalized Greedy Method

ELS

Beginning with all edges uncolored,
sequentially color edges

blue (accepted) or red (rejected).

Blue Rule:

Color blue any minimum-cost uncelered
edge crossing a cut with no blue edges
crossing.

" Red Rule:

Color red any maximum-cost uncolered
edge on a cycle with no red edges.
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Jarnik’s Algorithm

Grow a tree from a single start vertex.
At each step add a cheapest edge with

exactly one end in the tree.



Boruvka’s Algorithm

Repeat the following step until

all vertices are connected:

"For each bIUe»component, select a
cheapest edge connecting to anether

component; color all selected edees b

For correctness, a tie-breaking rule is needed.

- Henceforth, assume all edge costs are distimet.

Then there is a unique spanning tree.



"Classical" Algorithms

(before algorithm analysis)

Kruskal’s algorithm, 1956

O(m log n) time

Jarnik’s algorithm, 1930
O(n® time
also Prim, Dijkstra
~ Boruvka’s algorithm, 1926

O(min{mlog n, n*}) time

and many others




Selected History

Boruvka, 1926 O(min {mlogn,n’})
Jarnik, 1930 O(n*

Prim, 1957 |

Dijkstra, 1959
Kruskal, 1956 S O(mlogn)
Williams, Floyd, 1964 O(mlogn)

heaps
Yao, 1975

packets in Boruvka’s algorithm

Fredman, Tarjan, 1984
F-heaps in: :
Jarnik’s algorithm O(nlogn +m)
a hybrid Jarnik-Boruvka algorithm O(mlog™n)

Gabow, Galil, Spencer, 1984 ~ O(mloglog™n)
Packets in F-T algorithm | -

log™ n =min {i |logloglog...logn<1}

where the logarithm is iterated i times



Models of Computation

We assume comparison of the two edge costs
takes unit time, and no other manipulation of

edge costs is allowed.

Another model:
bit manipulation of the binary

representations of edge costs is allowed.

In this model,
Fredman-Willard, 1990, achieved O(m) time.

(fast small heaps by bit manipulation)



Goal: An O(m)-time algorithm

without bit manipulation of edge weights

Boruvka’s algorithm with contraction:
If G contains at least two vertices:

select cheapest edge incident to each vertex; |

Contract éll selected edges;

Recur on contracted graph.

~ If contraction preserves sparsity (m = O(n)),
- this algorithm runs in O(n) = O(m) time
on sparse graphs.

E.g. planar graphs



How to handle non-sparse graphs?

Thinning: remove all but O(n) edges by finding

edges that can’t be in the minimum spanning tree.

How to thin?




v Verification:

Given a spanning tree, is it minimum?

Thinning: Given a spanning tree, delete any

non-tree edge larger than every edge on tree pat

Joining its ends (red rule).

If all non-tree edges can be thinned,

tree is verified.,






I‘iistory\ of Verfication Algorithms
Tarjan, 1979 , O(m « (m,n))time
Komlos, 1984 | | O(m) comparisons
Dixon, Rauch, Tarjan, 1992  O(m)time

King, 1993 N O(m) time (simplified)

All these algorithms will thin.



Thinning by Random Sampling (1993)

Select half the edges at random.

Build a minimum spanning forest of the sample.

Thin.

How many edges remain?

Karger: O(nlogn) on average

Klein, Tarjan: < 2n on average



Minimum Spanning Forest Algorithm

=

If # edges/ # vertices < 5, then

(Boruvka step) Select the cheapest
incident to each vertex.

Contract all selected edges.
Recur on contracted graph.

Else

(Sampling and Thinning Step) Sample the
edges, each with probability 1/2.

Construct a minimum spanning forest of the
sample, recursively.

Thin using this forest.

Recur on Thinned Graph



Analysis

Boruvka step

m < 5n implies m’< 9m/10 since at least

T(m) = O(m) + T(9m/10)

Thinning Step
m>5n implies 2n<2m/5

T(m) = O(m) + T(m/2) +‘T(2m/5)

where T(m/2) and T(2m/5) are expected time

|
n/2 edges are contracted | |
T(m) = O(m) by induction



Bound on Number of Edges Not Thinnee¢

Let e,.e,,..., €. be the edges, in increasing cost.

Run the following variant of Kruskal’s algorithm.

Inititalize F = O.

Process the edges in order.

To process e, flip a coin to see if e is im the
sample. -

If e, forms a cycle with edges in F, discard it as
thinned.

-Otherwise, if e; is sampled, ‘add e, to F.
(Whether or not e; is sampled, it is net
thinned.)

F is the minimum spanning forest of the sample.



How many edges are not thinned?

The only relevant coin flips are those on unthinned
edges, each of which has a chance of 1/2
adding an edge to F (a succéss).

There can be at most n-1 successes.

For there to be more than k unthinned edges, the

first k relevant coin flips must give at most n-2
successes.

The chance of this is at most
2 o\l o\

L

In particular, the average number of unthinned
edges is at most 2n.



Preprocessing — Table Lookup

Idea: Given enough time (exponentlal Oor super-
| exponentlal) one can build an optimum algo-
rithm for a given problem in a given compu-
tational model, such as a decision tree. (The
algorithm itself may be exponential in size.)

This means that sufficiently small (log or log-
log size) subproblems can be solved optimalty
by table Iookup using only Imear preprocessing
time.



Fast Divide and Conquer

Rapidly divide the problem into polylog-size
subproblems. If combining time is linear, this
yields a recursive O(nlog* n)-time algorithm.

With table lookup to solve subproblems, the
overall solution time can be reduced, possi-
bly to linear. The algorithm becomes non-
recursive: only O(1) division steps are applied.



Overall approach:

Shrink log-log-size subtrees of original tree to
single vertices. Solve one problem on global
strunken tree via Tarjan (1979). Solve prob-
lems on small subtrees via precompauts?'()zpfci—
mal algorithms.
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Verification

each nontree edge:

cost as large as
max on tree path




Note:

This method can give algorithms optimal to
within a constant factor without offering a
tight estimate of how fast they are.
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Further Resulrs
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Open Problems

Deterministic O(m)?

Simpler verification?

Other applications?

directed spanning trees?

shortest paths?




