The Minimum Spanning Tree Problem

Given a connected graph, find a spanning tree of minimum total edge cost.

where,

n = the number of vertices

m = the number of edges

$$n-1 \leq m \leq \binom{n}{2}$$

Applications

Network Construction

Clustering

Minimum Tour Relaxation (Held-Karp 1-trees)

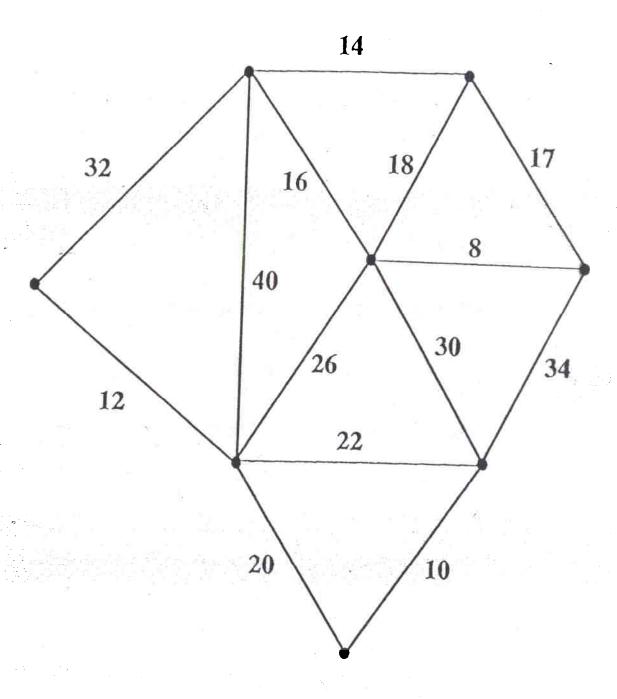
A Simple Solution From the 80's

(with apologies to Oliver Stone)

Gorden Gecko: "Greed is Good"

Repeatedly select the cheapest unselected edge and add it to the tree under construction if it connects two previously disconnected pieces.

Kruskal, 1956



The greedy method generalizes to matroids.

We shall generalize the method rather than the domain of application.

Generalized Greedy Method

Beginning with all edges uncolored,

sequentially color edges

blue (accepted) or red (rejected).

Blue Rule:

Color blue any minimum-cost uncolored edge crossing a cut with no blue edges crossing.

Red Rule:

Color red any maximum-cost uncolored edge on a cycle with no red edges.

3 NIST with all blue, no red

Jarnik's Algorithm

Grow a tree from a single start vertex.

At each step add a cheapest edge with exactly one end in the tree.

Boruvka's Algorithm

Repeat the following step until all vertices are connected:

For each blue component, select a cheapest edge connecting to another component; color all selected edges blue.

For correctness, a tie-breaking rule is needed.

Henceforth, assume all edge costs are distinct.

Then there is a unique spanning tree.

"Classical" Algorithms

(before algorithm analysis)

Kruskal's algorithm, 1956

 $O(m \log n)$ time

Jarnik's algorithm, 1930

 $O(n^2)$ time

also Prim, Dijkstra

Boruvka's algorithm, 1926

 $O(\min\{m \log n, n^2\})$ time

and many others

Selected History

Boruvka, 1926

× 20.

 $O(\min\{m\log n, n^2\})$

Jarnik, 1930

Prim, 1957

Dijkstra, 1959

 $O(n^2)$

Kruskal, 1956

 $O(m \log n)$

Williams, Floyd, 1964

heaps

 $O(m \log n)$

Yao, 1975

packets in Boruvka's algorithm

O(m loglogn)

Fredman, Tarjan, 1984

F-heaps in:

Jarnik's algorithm

 $O(n \log n + m)$

a hybrid Jarnik-Boruvka algorithm

 $O(m \log^* n)$

Gabow, Galil, Spencer, 1984
Packets in F. T. algorithm

 $O(m \log \log^* n)$

Packets in F-T algorithm

 $\log^* n = \min\{i \mid \log\log\log...\log n \le 1\}$

where the logarithm is iterated i times

Models of Computation

We assume comparison of the two edge costs takes unit time, and no other manipulation of edge costs is allowed.

Another model:

bit manipulation of the binary representations of edge costs is allowed.

In this model,

Fredman-Willard, 1990, achieved O(m) time.

(fast small heaps by bit manipulation)

Goal: An O(m)-time algorithm without bit manipulation of edge weights

Boruvka's algorithm with contraction:

If G contains at least two vertices:

select cheapest edge incident to each vertex;

Contract all selected edges;

Recur on contracted graph.

If contraction preserves sparsity (m = O(n)), this algorithm runs in O(n) = O(m) time on sparse graphs.

E.g. planar graphs

How to handle non-sparse graphs?

Thinning: remove all but O(n) edges by finding edges that can't be in the minimum spanning tree.

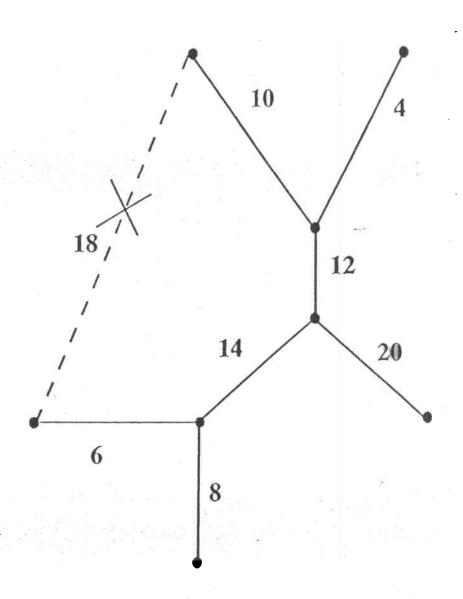
How to thin?

Verification:

Given a spanning tree, is it minimum?

Thinning: Given a spanning tree, delete any non-tree edge larger than every edge on tree path joining its ends (red rule).

If all non-tree edges can be thinned, tree is verified.



History of Verfication Algorithms

Tarjan, 1979

 $O(m \alpha (m,n))$ time

Komlos, 1984

O(m) comparisons

Dixon, Rauch, Tarjan, 1992

O(m) time

King, 1993

O(m) time (simplified)

All these algorithms will thin.

Thinning by Random Sampling (1993)

Select half the edges at random.

Build a minimum spanning forest of the sample.

Thin.

How many edges remain?

Karger:

O(nlogn) on average

Klein, Tarjan: < 2n on average

Minimum Spanning Forest Algorithm

If # edges/ # vertices < 5, then

(Boruvka step) Select the cheapest edge incident to each vertex.

Contract all selected edges.

Recur on contracted graph.

Else

(Sampling and Thinning Step) Sample the edges, each with probability 1/2.

Construct a minimum spanning forest of the sample, recursively.

Thin using this forest.

Recur on Thinned Graph

Analysis

Boruvka step

2.0

m < 5n implies m'< 9m/10 since at least

n/2 edges are contracted

$$T(m) = O(m) + T(9m/10)$$

Thinning Step

m>5n implies 2n<2m/5

$$T(m) = O(m) + T(m/2) + T(2m/5)$$

where T(m/2) and T(2m/5) are expected time

T(m) = O(m) by induction

Bound on Number of Edges Not Thinned

Let $e_1, e_2, ..., e_m$ be the edges, in increasing cost.

Run the following variant of Kruskal's algorithm.

Inititalize $F = \emptyset$.

Process the edges in order.

To process \mathbf{e}_{i} , flip a coin to see if \mathbf{e}_{i} is in the sample.

If e_i forms a cycle with edges in F, discard it as thinned.

Otherwise, if e_i is sampled, add e_i to F. (Whether or not e_i is sampled, it is not thinned.)

F is the minimum spanning forest of the sample.

How many edges are not thinned?

The only relevant coin flips are those on unthinned edges, each of which has a chance of 1/2 of adding an edge to F (a success).

There can be at most n-1 successes.

For there to be more than k unthinned edges, the first k relevant coin flips must give at most n-2 successes.

The chance of this is at most

$$(\frac{1}{2})^k \sum_{i=0}^{n-2} {k \choose i} < (\frac{1}{2})^k \sum_{i=0}^n {k \choose i}$$

In particular, the average number of unthinned edges is at most 2n.

Preprocessing – Table Lookup

Idea: Given enough time (exponential or superexponential) one can build an optimum algorithm for a given problem in a given computational model, such as a decision tree. (The algorithm itself may be exponential in size.)

This means that sufficiently small (log or loglog size) subproblems can be solved optimally by table lookup using only linear preprocessing time.

Fast Divide and Conquer

Rapidly divide the problem into polylog-size subproblems. If combining time is linear, this yields a recursive $O(n \log^* n)$ -time algorithm.

With table lookup to solve subproblems, the overall solution time can be reduced, possibly to linear. The algorithm becomes non-recursive: only O(1) division steps are applied.

Overall approach:

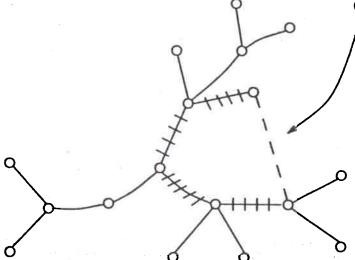
Shrink log-log-size subtrees of original tree to single vertices. Solve one problem on global strunken tree via Tarjan (1979). Solve problems on small subtrees via precomputed optimal algorithms.

Verification

each nontree edge:

cost as large as

/ max on tree path



Note:

This method can give algorithms optimal to within a constant factor without offering a tight estimate of how fast they are.

Further Results

O(ma(n)logh)) -> O(ma(n)) deterministic Chazelle: "soft"heaps

Optimal to within a constant factor

Pettie + Rang chandran:

Chazelle + optimal on small subproblems

Open Problems

Deterministic O(m)?

Simpler verification?

Other applications?

directed spanning trees?

shortest paths?